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Introduction

1. EVALUATE NORMALIZATION METHODS IN MULTI-OMICS

DATASETS

 Examining normalization strategies is critical for multi-omics
data preprocessing to reduce systematic error and discover
biological differences.

* In this study, multi-omics datasets were acquired from the
cardiomyocyte and motor neuron cells In a time-course
exposure study to acetylcholinesterase (AChE)-active
chemicals. We compared different normalization methods and
assessed the effectiveness by observing if a normalized
dataset could improve QC feature consistency and treatment-
related variance while preserve time-related variance.

2. FINITE MIXTURES FOR FUNCTIONAL CLUSTERING

 We use Bayeian hierarchical modeling (BHM) framework for
functional clustering. Each time-varying omic feature s
assumed to belong to a latent cluster while capturing
uncertainty and hierarchical structures.
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MODEL STATEMENT
1. VARIANCE EXPLAINED BY TIME OR TREATMENT
« PERMANOVA MODEL
* Main effects of Time, Treatment, and their interaction (Bray-
Curtis Distance)
The adonis2() result includes:
* R?: Proportion of variance explained by each predictor.
* F-value: Ratio of explained to unexplained variance.
» p-value: Statistical significance
2. FUNCTIONAL CLUSTERING
 LetY ir (t) be the expression value of omic feature i for replicate
r at time t transformed to log,FC relative to time O
1. Spline Representation:
For each cluster k, we have a vector of spline coefficients 8, € R”
and a B-spline basis where B(t), which gives the functional mean
for that cluster:
1 (t) = B(£)Bx
2. Cluster Membership:
Each omic feature Y;,(t) is assumed to belong to a cluster indexed
by a latent indicator z; where z; € {1, ..., K}.
3. Data Likelihood:
Given the cluster membership z;, the observation Y;..(t) is centered
around the cluster-specific mean u, (t), with shared noise o
YVir (£) | 2;,0% = k ~ N (g (), 0%)

4. Prior Distributions
- Mixture proportions m ~ Dirichlet(o)
-Bayesian smoothing spline prior for each cluster:

Br1 ~ N'(0,2)

,Bkj ~ N(.Bkj—l: ) Jj=2,.

-Observation noise parameter:

o~N1(0,1)
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FUNCTIONAL CLUSTERING (PROTEOMICS)
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Fitted and Simulated Clusters

(b) 105 proteins grouped
into 10 clusters, colored
by mean posterior
probability in predictions.
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Conclusion

We identified the most effective normalization methods for multi-omics
datasets and demonstrate a clustering strategy that accounts for the
uncertainty and hierarchical structures of time-varying omics features.
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