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Introduction
1. EVALUATE NORMALIZATION METHODS IN MULTI-OMICS
DATASETS
• Examining normalization strategies is critical for multi-omics

data preprocessing to reduce systematic error and discover
biological differences.

• In this study, multi-omics datasets were acquired from the
cardiomyocyte and motor neuron cells in a time-course
exposure study to acetylcholinesterase (AChE)-active
chemicals. We compared different normalization methods and
assessed the effectiveness by observing if a normalized
dataset could improve QC feature consistency and treatment-
related variance while preserve time-related variance.

2. FINITE MIXTURES FOR FUNCTIONAL CLUSTERING
• We use Bayeian hierarchical modeling (BHM) framework for

functional clustering. Each time-varying omic feature is
assumed to belong to a latent cluster while capturing
uncertainty and hierarchical structures.

MODEL STATEMENT 
1. VARIANCE EXPLAINED BY TIME OR TREATMENT 
• PERMANOVA MODEL 
• Main effects of Time, Treatment, and their interaction (Bray-

Curtis Distance)
The adonis2() result includes:
• R²: Proportion of variance explained by each predictor.
• F-value: Ratio of explained to unexplained variance.
• p-value: Statistical significance
2. FUNCTIONAL CLUSTERING 
• Let 𝑌_𝑖𝑟 (𝑡) be the expression value of omic feature i for replicate 

r at time t transformed to log2FC relative to time 0 
1. Spline Representation:
For each cluster 𝑘, we have a vector of spline coefficients 𝛃! ∈ ℝ"
and a B-spline basis where 𝐁 𝑡 , which gives the functional mean 
for that cluster:

𝜇! 𝑡 = 𝐁 𝑡 𝛃!
2. Cluster Membership:
Each omic feature 𝑌#∗ 𝑡 is assumed to belong to a cluster indexed 
by a latent indicator 𝑧# where 𝑧# ∈ {1, … , 𝐾}.
3. Data Likelihood:
Given the cluster membership 𝑧#, the observation 𝑌#% 𝑡 is centered 
around the cluster-specific mean 𝜇&! 𝑡 , with shared noise 𝜎:

𝑌#% 𝑡 ∣ 𝑧# , 𝜎' = 𝑘 ∼ 𝒩 𝜇! 𝑡 , 𝜎'
4. Prior Distributions
- Mixture proportions 𝜋 ∼ Dirichlet 𝛂
-Bayesian smoothing spline prior for each cluster:

𝛽!( ∼ 𝒩 0,2
𝛽!) ∼ 𝒩 𝛽!)*(, 𝜎+

' , 𝑗 = 2, … , 𝑝
-Observation noise parameter:

𝜎 ∼ 𝒩, 0,1

Conclusion
We identified the most effective normalization methods for multi-omics
datasets and demonstrate a clustering strategy that accounts for the
uncertainty and hierarchical structures of time-varying omics features.
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Differentiation between treatments and time points -- Effect size

Number of consistent features in pooled QC --RSD < 0.2

Dispersion between bio-replicates

Number of significant features between carbaryl or chlorpyrifos vs control

Functional comparison between two distinct normalization methods

NORMALIZATION 
EVALUATION 
• QC feature

consistency
(RSD < 0.2)

• The change in 
variance explained 
by time or treatment 
after normalization.

FUNCTIONAL 
CLUSTERING 
• Proteomics: 
105 significant features 
(chlorpyriphos vs 
control) were selected 
for functional 
clustering.

FUNCTIONAL CLUSTERING (PROTEOMICS) 

• 4k to 8k features in each omic. 
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(a) PQN caused the most consistent 
change in QC feature consistency
and variance explained by treatment.

Material and Methods
MULTI-OMICS SAMPLE PREPARATION

OMICS PREPROCESSING WORKFLOW 

(b) KEGG pathways 
PQN > Quantile 

(b) 105 proteins grouped 
into 10 clusters, colored 
by mean posterior 
probability in predictions.

(c) Time-varying 
predicted trajectories of 
clusters.

(d) Example of original 
protein intensity with 
model-fitted prediction.NORMALIZATION EVALUATION (METABOLOMICS)
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